

Challenges for Wetlands: assessing both ecological condition and services

Sites A and B

Human Disturbance Gradient (e.g. TP μg/L)

Challenges for Wetlands: assessing both ecological condition and services (Reference Condition for Aquatic Life)

Human Disturbance Gradient (e.g. TP μg/L)

Sites A and B

Challenges for Wetlands: assessing both ecological condition and services (Expected Condition for Ecosystem Services & HWB)

Human Disturbance Gradient (e.g. TP μg/L)

Sites A and B

Context & Application for Characterizing Reference Condition

- Goals for Management = Expected Condition
 - Can accommodate assessment of condition & services
- Reference condition (RC)
 - Comparable to minimally disturbed condition in rivers, streams, and lakes (as well as coastal zones)
 - 75th percentile of reference condition
 - Assessment
 - Modeled versus Regional MMIs
 - Good, Fair, and Poor with 75th and 95th %tiles of RC
- Clean, dirty, and dingy reference models
- Modeled Multimetric Indices of Biological Condition

Context & Application for Characterizing Reference Condition

- Goals for Management = Expected Condition
- Reference condition (RC)
- Clean, dirty, and dingy reference models
 - Clean: Only references sites used to characterize RC
 - Dirty: All sites (clean and dirty) used to model RC
 - Dingy: More and more dirty sites added to clean sites to eliminate problems with low sample sizes at characterization of RC
- Modeled Multimetric Indices of Biological Condition
 - Account for natural variability in reference condition
 - Model site-specific, expected (reference) condition based on naturally varying features (e.g. climate, hydrology) among sites

Three Tier Reference Site Filtering Approach*

- I. Compile available lake water chemistry databases that contain necessary screening variables. Develop ecoregion-specific screening criteria to make a first filter of the data for least-disturbed lakes
- II. Digitize watersheds for filtered lakes, make a second filter of GIS watershed land cover and road density information
- III. Examine aerial photos of lakes passing filters I and II to examine 100 m buffer around lake. Categorize them into disturbance classes for final use as reference lakes

Screening Criteria by Ecoarea Must Pass All Screens

Criteria	Adirondacks & New England Uplands	Maine Lowlands	Coastal	NY/VT Lowlands
ANC	> 50 or	> 50 or	> 50 or	> 50 or
(ueq/L)	DOC > 6	DOC > 6	DOC > 6	DOC > 6
Sulfate (ueq/L)	< 200	< 200	< 200	< 200
Chloride (ueq/L)	< 20	< 400	< 400	< 100
Nitrate (ueq/L)	< 5	< 5	< 5	< 5
Total P (ug/L)	< 10	< 10	< 15	< 20

"Reference Site" Frequency Distribution Approach

Biological Condition Indicator (e.g. CofC)

"All-Site" FD Approach – Best Available

Ecological Indicator (e.g. Nutrient Condition)

Predictive Modeling of Reference Condition

• Human Disturbance

Dingy Model: add dirty sites to clean

(e.g. Stevenson et al. 2008. JNABS (FS))

- Determining TP reference condition
- Too few reference sites for accurate determination of 75th percentile = 22 µg TP/L
- Successively added sites with greater and greater % watershed altered and monitored median and 75th percentiles
- Selected 75th percentile before increase in TP, 12 µg TP/L

Account for Natural Variability: Region & Wetland Class "Reference Site" Frequency Distribution Approach

Biological Condition Indicator (e.g. CofC)

(accounting for natural variation among systems)

(accounting for natural variation among systems)

(accounting for natural variation among systems)

Streams Predictive Model

Predicted Natural TP

ln(ug/L TP) = 6.883

- + 1.110(%Watershed Ag+Urb)
- -0.301(In(Watershed Slope))
- -4.173(% Riparian Zone as Wetlands)
- +0.679(ln(% Watershed as Wetlands)
- + 0.216(ln(Avg.Width))
- -1.325(In(Channel Sinuosity)

Adjusted R²=0.539

Frequency Distribution Benchmarks

TP Reference Condition (MDEQ STORET Data)

Sites	Agriculture + Urban Land Use	# Obs (N)	TP Conc
All	NA	279	22.0 μg TP/L
Ref	0% Watershed Disturbed	0	NA
Ref	<10% Watershed Disturbed	16	15.5 μg TP/L
Ref	<25% Watershed Disturbed	48	30.2 μg TP/L

"Natural varies depending upon how you define reference condition....."

Condition = Deviation from Expected Reference Condition Accounts for Natural Variation Among Habitats

2011 NWCA - Sampled Sites RC Cross Calibration Alaska **Ecoregions** Coastal Plain Southern Appalachians Upper Midwest Northern Appalachians Southern Plains Western Mountains Northern Plains Temperate Plains Xeric

2011 NWCA - Sampled Sites RC Cross Calibration Alaska **Ecoregions** Coastal Plain Southern Appalachians Upper Midwest Northern Appalachians Southern Plains Western Mountains Northern Plains Temperate Plains Xeric

2011 NWCA - Sampled Sites

